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Abstract.
Background: There is a shortage of clinicians with sufficient expertise in the diagnosis of Alzheimer’s disease (AD), and
cerebrospinal fluid biometric collection and positron emission tomography diagnosis are invasive. Therefore, it is of potential
significance to obtain high-precision automatic diagnosis results from diffusion tensor imaging (DTI) through deep learning,
and simultaneously output feature probability maps to provide clinical auxiliary diagnosis.
Objective: We proposed a factorization machine combined neural network (FMCNN) model combining a multi-function
convolutional neural network (MCNN) with a fully convolutional network (FCN), while accurately diagnosing AD and mild
cognitive impairment (MCI); corresponding fiber bundle visualization results are generated to describe their status.
Methods: First, the DTI data is preprocessed to eliminate the influence of external factors. The fiber bundles of the corpus
callosum (CC), cingulum (CG), uncinate fasciculus (UNC), and white matter (WM) were then tracked based on deterministic
fiber tracking. Then the streamlines are input into CNN, MCNN, and FMCNN as one-dimensional features for classification,
and the models are evaluated by performance evaluation indicators. Finally, the fiber risk probability map is output through
FMCNN.
Results: After comparing the model performance indicators of CNN, MCNN, and FMCNN, it was found that FMCNN
showed the best performance in the indicators of accuracy, specificity, sensitivity, and area under the curve. By inputting the
fiber bundles of the 10 regions of interest (UNC L, UNC R, UNC, CC, CG, CG+UNC, CG+CC, CC+UNC, CG+CC+UNC,
and WM into CNN, MCNN, and FMCNN, respectively), WM shows the highest accuracy in CNN, MCNN, and FMCNN,
which are 88.41%, 92.07%, and 96.95%, respectively.
Conclusion: The FMCNN proposed here can accurately diagnose AD and MCI, and the generated fiber probability map can
represent the risk status of AD and MCI.
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INTRODUCTION

Tens of millions of people worldwide still suffer
from Alzheimer’s disease (AD) [1] and attempts to
develop effective disease-modifying therapies remain
stagnant. Although researchers have made great
strides in detecting AD pathology using cerebrospinal
fluid biomarkers [2–4], positron emission tomogra-
phy amyloid [5, 6], and tau imaging [7, 8], these
models are usually limited to the research context.
Current diagnostic criteria rely on highly skilled
neurologists, who examine patients by taking a
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patient history, objective cognitive assessments (e.g.,
Mini-Mental State Examination or other neuropsy-
chological testing [9]), and diagnosis by structural
magnetic resonance imaging (MRI) underlying AD.
Clinic pathological studies have shown that the diag-
nostic sensitivity of clinicians is between 70.9%
and 87.3%, and the specificity is between 44.3%
and 70.8% [10]. Although MRI reveals character-
istic brain changes noted in AD (e.g., hippocampal
and temporal lobe atrophy [11]), these features lack
specificity for the diagnosis of AD [12–14]. Current
AD-based diagnosis faces the following challenges:
Diagnosis of AD based on features such as hippocam-
pal and temporal lobe atrophy is relatively imprecise;
acquisition of cerebrospinal fluid biosignatures and
positron emission tomography diagnosis are inva-
sive; and there is a lack of adequate clinicians with
relevant expertise. Based on this, high-precision auto-
matic diagnosis results can be obtained from MRI
through deep learning to provide auxiliary diagno-
sis for clinical use. Research such as that by Hinton
[15] and Topol [16], based on deep learning [17],
provides methods to derive high-accuracy predic-
tions from MRI data collected within the scope
of neurology practice. Qiu et al. [18] used con-
volutional neural networks (CNN) to classify the
cognitive state of subjects based on MRI and mul-
timodal data, which also proved the effectiveness of
the current researchers’ application of deep learning
methods. Despite the superior results of these experi-
ments, these models have not yet been fully integrated
into clinical practice. Additionally, in the biomedical
field, more and more people consider deep learn-
ing models to be “black box” algorithms [19]. In
other words, while deep learning models have demon-
strated high-accuracy classification across a broad
range of diseases, they neither illuminate underly-
ing diagnostic decisions nor identify input features
relevant to output predictions, therefore, the clin-
ical potential of deep learning is undermined by
the increasing use of opaque decision frameworks.
Finally, computerized individual-level representa-
tions of AD remain unresolved, because of the
uncertainty of AD onset and the heterogeneity of
symptoms. On the other hand, considering that the
pathological features of AD are mainly senile plaques
and fibrillary entanglement, it shows that from a
clinical point of view, the neurological differences
between AD patients and normal elderly are more
significant. Therefore, it makes sense to use the con-
nectivity or fibers between brain regions as input data
for diagnosis, as Lella et al. [20] developed a machine

learning framework based on whole-brain communi-
cability for the classification and characterization of
AD importance analysis. This study compared the
performance of three state-of-the-art classification
models [support vector machines (SVM), random
forest (RF), and artificial neural networks (ANN)] on
brain connectivity networks of normal control (NC)
and AD patients in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. Furthermore,
this experiment clinically validates the information
content of the communication competence indica-
tor by performing a feature importance analysis.
Overcoming these challenges is not only critical to
harnessing the potential of deep learning algorithms
to improve patient care, but also paves the way for
explainable evidence-based machine learning in the
medical imaging community. Based on the above two
points, we extract fiber information from DTI data
and classify it by deep learning. We improve the tra-
ditional CNN, combine multi-function convolutional
neural networks (MCNN) [21] with fully convolu-
tional networks (FCN) [22], and propose a novel deep
learning framework, factorization machine combined
neural network (FMCNN) model, which can accu-
rately diagnose AD while generating high-resolution
fiber bundle visualization results of AD risk, using
for accurate prediction of AD and mild cognitive
impairment (MCI) status.

The flow of the classification algorithm proposed
in this paper is shown in Fig. 1. First, the diffusion
tensor imaging (DTI) data are preprocessed includ-
ing eddy current correction, head motion correction,
spatial standardization, and scalp removal to elimi-
nate the influence of external factors on the data itself.
The preprocessed DTI was then tracked by determin-
istic fiber tracking, and the seed points were set in the
corpus callosum (CC), cingulum (CG), uncinate fas-
ciculus (UNC), and white matter (WM) to track the
fiber bundles corresponding to the region of inter-
est. The fiber bundle streamlines are input into CNN,
MCNN, and FMCNN as one-dimensional features
for classification and the models are evaluated by per-
formance evaluation indicators. Finally, the AD fiber
risk probability map is output through FMCNN.

METHODS

Data

Data used in the preparation of this arti-
cle were obtained from the ADNI database
(https://adni.loni.usc.edu). The ADNI was launched
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Fig. 1. The structural framework of this paper.
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in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
MRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. For up -to-date information, see
https://www.adni-info.org.

The ADNI is a longitudinal multicenter study to
develop clinical, imaging, genetic, and biochemical
biomarkers for early detection and tracking of AD
[23]. Model training, internal validation, and testing
were performed on the ADNI dataset. Selection crite-
ria included individuals aged 55-75 years with a 1.5 T
scan within 6 months of the date of clinical diagnosis
of AD or NC. We excluded cases including AD with
mixed dementia, non-AD dementia, history of severe
traumatic brain injury, major depression, stroke and
brain tumor, and occasional major systemic disease.
These inclusion and exclusion criteria were adapted
from the baseline recruitment protocol developed by
the ADNI study [23]. Finally, we selected DTI data
of 413 individuals from the ADNI cohort, including
121 AD, 130 MCI, and 162 NC. If the subject under-
went multiple MRI scans within the time window,
the experiment selected the scan closest to the date
of clinical diagnosis.

Preprocessing

This step of image preprocessing is to elimi-
nate differences in anatomical structures that exist
between different subjects’ brains and improve the
signal-to-noise ratio of neuroimaging data. The key
steps of preprocessing are as follows: 1) Non-
uniformity correction: to eliminate external factors
such as the non-uniformity of the radio frequency
coil, the non-uniformity of the main magnetic field,
and the nonlinear gradient field; 2) Head movement
correction: to remove the error caused by the slight
movement of the subject’s head during data collec-
tion; 3) Tissue segmentation: to avoid background
other than brain tissue influence on the results; 4)
Data enhancement: firstly flip the data up and down
to double the amount of data, and then flip left and
right to quadruple the amount of data.

Deterministic fiber tracking

Deterministic fiber tracking algorithms incorpo-
rate local estimates of diffusion direction informa-
tion. Once we know the orientation of the fibers

at each voxel, we can connect these orientations
to reconstruct the full trajectory, approximating the
anatomical bundle. The simplest calculation flow is:
start at the seed point position and follow the pre-
ferred direction until we reach a new voxel; then we
can change to the reference direction for this voxel
and continue until the entire fiber bundle is traced.

The two most well-known algorithms for fiber
tracking are deterministic fiber tracking [24, 25] and
probabilistic fiber tracking [26]. If the fiber model
being used contains uncertainty, i.e., there is an error
in estimating the fiber orientation at each voxel, then
the trajectory propagation algorithm belongs to the
probability domain. If it does not assume any uncer-
tainty along the path of the trajectory, then it belongs
to the deterministic domain. There are many classical
trajectory propagation methods, such as global trajec-
tory [8]. One of the simplest and earliest deterministic
methods is Fibre Assignment by Continuous Track-
ing (FACT) [25]. The FACT algorithm starts with an
input at any point in a voxel and propagates in two
directions, forward and backward. The most impor-
tant part of these tracking methods is the way they
decide to stop tracking. FACT uses a single threshold
variable R to decide:

R =
s∑

i

s∑

j

|⇀ ei · ⇀ ej|
s(s − 1)

(1)

where s is the number of adjacent voxels and e is
the eigenvector corresponding to the highest eigen-
value in each voxel. The simplest case for defining
a voxel neighborhood is to use all other 26 neigh-
boring (contacting) voxels. When adjacent fibers are
aligned, R will be close to 1 because the normalized
vectors become more collinear so the absolute value
of each dot product will be close to 1. When the adja-
cent fiber directions are not aligned, R becomes small
in areas of discordance. In voxels where R is less than
a predetermined threshold, for example, the threshold
is set to 0.8, point tracking will stop and FACT will
terminate. A significant problem with FACT is that it
cannot track in areas with intersections. When there
are fiber intersections in the voxel, it only traces one
of the main paths in the intersection area. Determin-
istic algorithms track trajectories by making a series
of discrete locally optimal decisions. We use stream-
lines to delineate them. The main disadvantage of
deterministic algorithms is that they are susceptible
to local noise.

The cingulate tract, uncinate, and corpus callosum
are key components known to be clinically associated
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with cognitive function and AD [27–31]. In particu-
lar, the cingulate tract includes important connections
to the default mode network and the hippocampal
memory network. The uncinate bundle is an impor-
tant pathway in the frontolimbic network. The corpus
callosum is responsible for communication between
the cerebral hemispheres and plays an important role
in overall brain integration. Therefore, this paper
investigated the relationship between the white mat-
ter of these three regions and their combined regions
and whole brain with AD, MCI, and NC.

In this experiment, we used DSI-Studio software to
track the CC, CG, UNC, and WM by setting different
seed points based on deterministic fiber tracking. And
then we extracted features from these fiber bundles.
One million points were tracked for each region of
interest (ROI). The fiber bundles of the CC include
the minor forceps of corpus callosum, the body of
the corpus callosum, the tapetum of the corpus callo-
sum, and the major forceps of corpus callosum; the
fiber bundles of the CG include the left and right fiber
bundles connecting the frontal and the parahippocam-
pal gyrus, the left and right fiber bundles connecting
the frontal and the parietal, the left and right fiber
bundles connecting the parahippocampal gyrus and
the parietal lobe, the left and right fibers surround-
ing the hippocampus, and the left and right fibers
surrounding the parolfactory area; the uncinate fasci-
culus consists of left and right fiber bundles.

Classification model building

The experiment in this part compares CNN,
MCNN, and FMCNN to verify the improvement
of our constructed framework FMCNN on MCNN
and CNN. The training set of the input classification
model is 1000 blocks of size 1×1050.

The CNN model consists of 6 convolutional layers
and 2 fully connected layers, and the five convolu-
tional layers are followed by BN layers and maximum
pooling layers. The epoch of CNN is set to 3000, the
batch size is set to 10, and the optimal learning rate
is 0.0053 through the global search algorithm. The
specific frame diagram is shown in Fig. 2.

The MCNN model is an improvement on the
CNN model which introduces the concept of multi-
core, aiming to more comprehensively extract the
abstract feature information in fiber bundles by con-
necting different convolution kernels in parallel to
fuse abstract features at different levels. MCNN con-
sists of 1 multi-kernel layer and 2 fully connected
layers. The multi-kernel layer consists of 6 convo-

lutional layers, of which 5 convolutional layers are
connected in parallel, and the kernel sizes of these 5
convolutional layers are 3, 7, 13, 27, and 45, respec-
tively. A batch normalization (BN) layer is connected
after each convolutional layer for normalization. The
epoch of the MCNN model is set to 3000, the batch
size is set to 10, and the optimal learning rate is 0.0003
through the global search algorithm. The specific
frame diagram is shown in Fig. 3.

FMCNN consists of 4 multi-kernel layers and 1
variable classification block. For classification tasks,
the last 1 variable classification block acts as a dense
layer to improve model efficiency [32]. The network
is retrained with random initial weights. We used
the Adam optimizer with a learning rate of 0.0001
and a batch size of 10, where the learning rate is the
optimal learning rate calculated by the global search
algorithm. During training, the model is saved when
it reaches the minimum error on the ADNI valida-
tion dataset. After FCN training, fiber streamlines
are forwarded to obtain a complete array of disease
probabilities, which we refer to as disease probability
maps.

The FMCNN is trained through the 17 layers net-
work to obtain the model related parameters, and then
tested through the 19 layers network model and out-
put the corresponding probability map. The input data
is a 1-dimensional vector and the channel is 1. The
training is performed by repeatedly applying the data
to the training set, and the final output shape is 3×1.
These values can be transformed into respective AD,
NC, and MCI probabilities by applying the softmax
function, and then the larger of the two probabilities
is used for the classification of disease states.

After evaluating the classification stability of the
model, the variable classification block is trans-
formed into a disease probability map of the subjects
generated by 2 convolutional layers and 2 upsam-
pling layers. AD status is predicted by selecting an
AD probability value from a disease probability map.
This choice is based on observations of the overall
performance of the FCN classifier, estimated using
area under the curve (AUC), accuracy (ACC), speci-
ficity (SPE), and sensitivity (SEN) on ADNI training
data. The FMCNN framework is shown in Fig. 4.

Evaluation metrics for classification models

The model in this paper is constructed based on
ADNI data, which is randomly divided into three
groups with a ratio of 8 : 1:1 for training, validation,
and testing. Models are built on a per-train and val-
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Fig. 2. CNN framework diagram.

idation basis and evaluated on performance on the
test dataset. The performance measures of the diag-
nostic model in this paper will use SEN, SPE, ACC,
precision-recall (P-R) curve, average precision (AP)
value, receiver operating characteristic (ROC) curve,
and AUC were quantified.

SEN, SPE, and ACC can be calculated from the
four classification test result values of true positive
(TP), true negative (TN), false negative (FN), and
false positive (FP). In this paper, AD was taken as
Positive and MCI and NC as negative. When both the
label and the sample prediction classification are AD,
the classification result is considered as TP. Similarly,
when the label and sample prediction classification
are the same, MCI or NC, the classification result is
considered as TN. When labeled AD and predicted
as MCI or NC, the classification result is considered
to be FP. When labeled MCI or NC and predicted as
AD, the classification result is considered to be FN.

1) SEN
SEN is defined as the proportion of true positives

that the classification model can correctly identify,
and it describes the ability of the classification model
to predict a positive sample as a positive sample. The

numerical value of SEN represents the probability
that the classification model will classify a sample
with the actual label of 1 as 1. The higher the SEN
number, the less likely the classification model will
return FP results. Its formula is as follows:

SEN = TPR = TP

TP + FN
(2)

2) SPE
SPE is the proportion of TN that the classifica-

tion model can correctly identify, and it describes the
ability of the classification model to predict negative
samples as negative samples. The numerical value of
specificity represents the probability of classifying a
sample with an actual label of 0 as 0 in a test of the
classification model without giving a FP result. The
SPE of the classification model is 99% means when
we perform a classification test on a sample whose
actual label is 0, the probability that this sample will
be classified as 0 by the classification model is 99%.
Its formula is as follows:

SPE = TN

TN + FP
(3)
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Fig. 3. MCNN framework diagram.

FCN

Fig. 4. FMCNN framework diagram.
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3) ACC
ACC is the most commonly used performance

measure in classification tasks, and it applies to both
binary and multiclass tasks. The ACC rate is the pro-
portion of correctly classified samples to the total
number of samples, and its value represents the pro-
portion of true results in the tested group, which is
a combination of TP and TN. It measures the ACC
of the classification model for classifying samples. A
99% ACC indicates that the test results are accurate
in most cases, positive or negative. However, the for-
mula for ACC means that even if SEN and SPE are
high, it does not mean that the classification ACC is
equally high. In addition to SEN and SPE, ACC is
also determined by the proportion of such samples in
the overall sample. Classification of sample classes
that make up a small proportion of the overall sample
may result in high SEN and SPE, but low ACC. ACC
needs to be interpreted with caution. Its formula is as
follows:

ACC = TP + TN

TP + FN + TN + FP
(4)

4) ROC and AUC
The samples are sorted according to the prediction

results of the classification model, and the samples
are predicted as positive examples one by one in this
order, and the “False Positive Rate” (FPR) and “True
Positive Rate” (TPR) are calculated each time. Take
FPR as the abscissa and TPR as the ordinate to get
the ROC curve. In classification problems, a threshold
corresponds to an FPR and a TPR. When the thresh-
old is changed, the corresponding FPR and FPT also
change. When the threshold moves continuously, the
ROC curve is obtained by plotting the correspond-
ing continuously changing (FPR, TPR) in the graph.
ROC describes the ability of the threshold to dis-
tinguish the subject, and also reflects the ability to
distinguish positive examples and negative examples.
A good classification model requires the ROC curve
to be as close as possible to the upper left corner of the
graph. According to this characteristic of ROC, the
area under the ROC curve is calculated to obtain the
area under the curve indicator. The formula of TPR
is the same as that of SEN, and the formula of FPR
is as follows:

FPR = FP

TN + FP
(5)

RESULTS

Our deep learning pipeline can predict AD status
from DTI data by combining the segmentation con-
cept in FCN with the multi-feature fusion concept in
MCNN. Fiber tracking was performed on DTI of AD,
MCI, and NC by deterministic fiber tracking after
preprocessing of the DTI data. Then, the fibers in
the region of interest are input into CNN, MCNN,
and FMCNN for classification, and finally the cor-
responding high-risk fiber bundle probability map is
output through FMCNN.

The first row in Fig. 5 shows the confusion matrices
of UNC L, UNC R, UNC, CC, and CG+UNC clas-
sification models, respectively, and the second row
of four graphs show confusion matrix for the CG,
CC+UNC, CG+CC, CG+CC+UNC, and WM clas-
sification model, respectively. The horizontal axis of
the confusion matrix is the predicted label, and the
vertical axis is the actual label. Visualize the color
of the values in the squares by different color. The
closer to dark green the larger the sample size that
falls in that area. The third row of Fig. 5 shows the
ROC and P-R curves of UNC L, UNC R, UNC, CC,
CG+UNC, CG, CC+UNC, CG+CC, CG+CC+UNC,
and WM after model classification, respectively. The
closer the curve is to the upper left corner, the more
stable the performance of the model is. The abscissa
of the P-R curve is the recall rate, and the ordinate is
the precision. The curve reflects the comprehensive
index of recall rate and precision. The results show
that feeding the fibers of the WM into the CNN gives
the best results.

The first row in Fig. 6 shows the confusion matrices
of UNC L, UNC R, UNC, CC, and CG+UNC clas-
sification models, respectively, and the second row
of four graphs show CG, CC+UNC, CG+CC, and
CG+CC+UNC, respectively and confusion matrix for
the WM classification model. Visualize the color of
the values in the squares by color. The closer to dark
green the larger the sample size that falls in that area.
The third row of Fig. 6 shows the ROC and P-R
curves of UNC L, UNC R, UNC, CC, CG+UNC,
CG, CC+UNC, CG+CC, CG+CC+UNC, and WM
after model classification, respectively. The results
show that feeding the fibers of WM into MCNN gives
the best results.

The graphs in the first row in Fig. 7 show the
confusion matrices of the UNC L, UNC R, UNC,
CC, and CG+UNC classification models, respec-
tively, and the four graphs in the second row show
CG, CC+UNC, CG+CC, and CG+CC+UNC, respec-
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Table 1
Model performance evaluation

ROI CNN MCNN FMCNN

ACC% SEN% SPE% ACC% SEN% SPE% ACC% SEN% SPE%

UNC R 75.00 90.52 72.92 79.27 91.38 81.25 84.15 91.38 85.42
UNC L 77.44 90.52 77.08 81.71 91.38 83.33 85.98 92.24 87.50
UNC 79.27 91.38 79.17 83.54 93.10 85.42 88.41 93.10 89.58
CC 80.49 90.52 81.25 85.98 93.10 89.58 89.02 94.83 89.58
CG 82.32 91.38 85.42 85.98 92.24 87.50 90.85 95.69 91.67
UNC+CC 82.93 89.66 85.42 87.20 93.10 89.58 92.07 97.41 91.67
UNC+CG 84.76 92.24 87.50 88.41 93.97 91.67 92.68 96.55 93.75
CC+CG 84.15 90.52 87.50 87.80 93.97 91.67 93.29 95.69 95.83
UNC+CC+CG 86.59 90.52 89.58 90.24 93.97 95.83 95.12 97.41 97.92
WM 88.41 92.24 93.75 92.07 95.69 97.92 96.95 97.41 100.00

tively, and confusion matrix for the WM classification
model. The horizontal axis of the confusion matrix
is the predicted label, and the vertical axis is the
actual label. Visualize the color of the values in
the squares by color. The closer to dark green the
larger the sample size that falls in that area. The
third row of Fig. 7 shows the ROC and P-R curves
of UNC L, UNC R, UNC, CC, CG+UNC, CG,
CC+UNC, CG+CC, CG+CC+UNC, and WM after
model classification, respectively. The results show
that feeding the fibers of WM into FMCNN gives the
best results.

The performance evaluation metrics in Table 1 con-
firm the consistent, high classification performance of
deep learning models on external datasets. Among
them, WM showed the best classification perfor-
mance. It shows that in the classification of AD, NC,
and MCI, for the three fiber bundles of interest, CC,
CG and UNC, the fiber bundles in CG show obvious
differences, while the fiber bundles in CC have little
change in AD and NC. For the two ROIs of UNC L
and UNC R, the ACC, SPE, and SEN of UNC L were
higher than those of UNC R, indicating that the UNC
on the left side of the brain contributed more to AD
classification than the UNC on the right side of the
brain, a conclusion that has been widely accepted.
This is consistent with the conclusion that the left
brain controls memory function. The experimental
results show that, compared with CC and UNC, the
fiber bundles in CG have a higher predictive ability
for AD, which is consistent with the conclusion in
previous studies [33] that CG is the most relevant
WM brain region for cognitive memory. For the four
combinations of CG+CC, CG+UNC, CG+CC+UNC,
and CC+UNC, CG+CC+UNC showed higher accu-
racy, indicating that the integrated WM features of
these three regions are useful in distinguishing AD
from MCI and NC have a greater contribution. For

all input features, WM showed the best classification
results, indicating the importance of WM fibers in
AD classification.

After demonstrating the effectiveness of FMCNN
for AD and MCI diagnosis, we output the fiber
probability maps. The four lines in Fig. 8 respec-
tively represent the UNC quantitative anisotropy
(QA) map, the QA map + the map of fiber bundles,
the fiber bundle map and the grayscale display map
of high-risk fiber bundles processed by FCMNN.
The three columns of Fig. 8a-c represent the cross-
section, coronal plane, and sagittal plane of the
AD image, respectively; Fig. 8d-f show the cross-
sectional, coronal, and sagittal planes of the MCI
images, respectively; and Fig. 8g-i show the cross-
sectional, coronal, and sagittal planes of the NC
images, respectively. For the color representation of
the last row in Fig. 8, its gray value ranges from 0 to
1. The closer the value is to 1, the higher the weight of
the fiber in this category, the closer it is to 0, indicat-
ing that the fiber is more likely not to be classified into
this category. From Fig. 8g-i, it can be clearly seen
that the fibers on the left side of the UNC are closer
to white than the right side, indicating that the right
side contributes more to the classification of NC.

The four rows of Fig. 9 respectively represent the
CC QA map, the QA map + the map of fiber bun-
dles, the fiber bundle map, and the grayscale display
map of high-risk fiber bundles processed by FCMM.
The three columns in Fig. 9a-c represent the cross-
section, coronal plane, and sagittal plane of the AD,
respectively. Figure 9d-f show the cross-sectional,
coronal, and sagittal planes of the MCI images,
respectively; and Fig. 9g-i show the cross-sectional,
coronal, and sagittal planes of the NC images, respec-
tively. According to the last row of Fig. 9a-c, it can
be found that the body of corpus callosum and the
major forceps of corpus callosum are highly corre-
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Fig. 8. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of UNC.

lated with AD positivity. According to the last row
of Fig. 9d-f, it can be found that the body of corpus
callosum and the tapetum of the corpus callosum are
highly correlated with AD and MCI positivity.

The four lines of Fig. 10 respectively represent
the CG+UNC QA map, the QA map and the fiber
bundle overlay map, the fiber bundle map and the
grayscale display map of the high-risk fiber bundles
processed by FCMM. The three columns in Fig. 10a-c
represent the cross-section, coronal plane, and sagit-
tal plane of the AD image, respectively. Figure 10d-f
show the cross-sectional, coronal, and sagittal planes
of the MCI images, respectively; and Fig. 10g-i show
the cross-sectional, coronal, and sagittal planes of the
NC images, respectively. From the probability maps
in the last row of Fig. 10a-c, it can be seen that except
for the right side of the UNC and the cingulate bun-
dle fibers connecting the hippocampus and parietal
lobe, other fibers are highly correlated with AD pos-
itivity. From the probability map in the last row of
Fig. 10d-f, we can see that the fibers of the left cin-
gulate tract connecting the frontal and parietal lobes,
and the right cingulate tract connecting the parahip-
pocampal gyrus and the parietal lobe fibers, fibers of
the left cingulate tract connecting the parahippocam-
pal gyrus and the parietal lobe were highly correlated
with AD and MCI positivity.

The four rows of Fig. 11 respectively represent the
CG QA map, the QA map + the map of fiber bun-
dles, the fiber bundle map, and the grayscale display
image of the high-risk fiber bundles processed by

FCMM. The three columns in Fig. 11a-c represent
the cross-section, coronal plane, and sagittal plane
of the AD image, respectively. Figure 11d-f show
the cross-sectional, coronal, and sagittal planes of
the MCI images, respectively; and Fig. 11g-i, show
the cross-sectional, coronal, and sagittal planes of
the NC images, respectively. From the comparison
of the last two rows of Fig. 11, it is found that in
the AD fiber bundle probability map, the left fiber
bundle connecting the frontal and the parahippocam-
pal gyrus, the left fiber bundle connecting the frontal
and the parietal lobe, and the left fiber bundle con-
necting parahippocampal gyrus and the parietal lobe
and the fiber tracts surrounding the paraolfactory area
were significantly more whitish than the other fiber
tracts, indicating that the fiber tracts in other parts
contributed more to AD classification than the fiber
tracts in these parts. In the NC fiber bundle proba-
bility map, the fiber bundles connecting the frontal
and parietal lobes and the fiber bundles surrounding
the parolfactory area are significantly redder than the
fiber bundles in other areas, indicating that in addi-
tion to these two areas, other areas are contributing
more to NC classification.

The four rows of Fig. 12 represent the QA map
of CC+UNC, the QA map + the map of fiber bun-
dles, the fiber bundle map, and the grayscale display
map of high-risk fiber bundles processed by FCMM.
The three columns in Fig. 12a-c represent the cross-
section, coronal plane, and sagittal plane of the AD
image, respectively. Figure 12d-f show the cross-
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Fig. 9. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CC.

Fig. 10. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CG+UNC.

sectional, coronal, and sagittal planes of the MCI
images, respectively; and Fig. 12g-i, show the cross-
sectional, coronal, and sagittal planes of the NC
images, respectively. From the probability maps in
Fig. 12a-c, we found expect the tapetum of the cor-
pus callosum and the fibers on the right side of the

UNC, the fibers in other parts were highly correlated
with AD positivity.

The four rows of Fig. 13 respectively represent
the CG+CC QA map, the QA map + the fiber bundle
map, the fiber bundle map, and the grayscale dis-
play map of the high-risk fiber bundles processed by
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Fig. 11. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CG.

Fig. 12. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CC+UNC.

FCMM. The three columns in Fig. 13a-c represent
the cross-section, coronal plane, and sagittal plane
of the AD image, respectively. Figure 13d-f show
the cross-sectional, coronal, and sagittal planes of
the MCI images, respectively; and Fig. 13g-i show

the cross-sectional, coronal, and sagittal planes of the
NC images, respectively. From the probability maps
in Fig. 13a-c, it was found that fibers in other parts
except the major forceps of corpus callosum were
highly correlated with AD positivity. From the prob-
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ability maps of Fig. 13g-i, it is found that the fibers
of the body of CC and the CG surrounding the hip-
pocampal are highly correlated with AD and MCI
positivity.

The four rows of Fig. 14 respectively represent the
QA map, QA map, and fiber bundle overlay map
of CG+CC+UNC, fiber bundle map, and grayscale
display map of high-risk fiber bundles processed by
FCMM. The three columns in Fig. 14a-c represent
the cross-section, coronal plane, and sagittal plane
of the AD image, respectively. Figure 14d-f show
the cross-sectional, coronal, and sagittal planes of the
MCI images, respectively; and Fig. 14g-i, show the
cross-sectional, coronal, and sagittal planes of the NC
images, respectively. By comparing the probability
maps in Fig. 14a-f, it is found that the left side of
the UNC and the CG connecting the hippocampus
and the parietal were highly correlated with AD pos-
itivity. From the probability maps in Fig. 14a-c, it is
found that other fiber bundles except the tapetum of
the corpus callosum are highly correlated with AD
positivity.

The four rows of Fig. 15 respectively represent
the QA map, QA map + fiber bundle map of WM,
fiber bundle map, and grayscale display map of high-
risk fiber bundles processed by FCMM. The three
columns in Fig. 15a-c represent the cross-section,
coronal plane, and sagittal plane of the AD image,
respectively. Figure 15d-f show the cross-sectional,
coronal, and sagittal planes of the MCI images,
respectively; and Fig. 15g-i, show the cross-sectional,
coronal, and sagittal planes of the NC images, respec-
tively. Combined with the probability map in the last
row of Fig.15, it was found that the area of fiber tracts
connecting the gray matter portion of WM was highly
correlated with AD and MCI positivity.

DISCUSSION

Our method is compared with other methods in the
literature, as shown in Table 2. Among them, Yida et
al. collected and cleaned the data of the four hospital
sites and applied it to the competition, and finally
selected the top 5 from the competition for com-
parative analysis. The model used in the first place
is XGBoot, which obtained 82.36% ACC, 86.36%
SEN, 78.05% SPE, and 0.88 AUC. Ghaidaa et al.
downloaded the tested DTI data from the ADNI
database, first performed feature extraction on the
data by SHIFT and SURFT, then performed feature
selection on the data by BoW, and classified it by

SVM, finally get 89% ACC for the classification
of AD, MCI, and NC. Bahare et al. classified AD
and NC by KSVM with 95.8% ACC, 95.8% SEN,
95.8% SPE, and 0.99 AUC. Ying et al. performed
the classification to obtain an ACC of 91.92% and
an AUC of 0.95. Li et al. extracted features from the
data through VGG16, and then classified the features
through SVM, obtaining an ACC of 94.2%, a SEN
of 97.3%, a SPE of 92.9%, and the AUC of 0.95.
Through our method, we obtained an ACC of 96.95%,
a SEN of 97.41%, a SPE of 100% and an AUC of 0.98.
The ACC, SEN, and SPE obtained by our method
were better than those of methods in Table 2, higher
by 1.15%, 1.61%, and 4.2%.

Advantages of this paper: 1) Considering that AD
pathological features (senile plaques and filament
winding) are abnormal protein deposits around neu-
rons and synapses, we extracted neural information
from nerve fibers for classification; 2) We used the
coordinates of the fibers points as input features,
which not only makes the input feature dimension
low, but also retains the direction information of the
fiber direction; 3) MCNN fuses abstract features of
multiple scales, and FCN can locate the classifica-
tion probability of each voxel, so this paper fused
these two frameworks to achieve an accurate diag-
nosis of AD and MCI while capturing fiber-related
disease status in brain ROIs.

This experiment also has certain limitations. We
considered a case-control population in which three
cognitively normal or diagnosed (AD and MCI) sub-
populations were preselected. This situation does not
fully represent the standard clinical decision-making
process neurologists face. Patients typically present
with a set of symptoms and the results of standard
neurological tests that suggest a spectrum of neurode-
generative disorders rather than a binary situation.
Therefore, our method cannot be directly applied to
its current state, but rather serves as a first step towards
establishing a more comprehensive framework to
characterize the multiple etiologies of neurodegen-
eration. Secondly, the single dataset ADNI used in
the experimental data is not decentralized, and it is
impossible to know the impact of different datasets
on the results.

Conclusion

The deep learning framework of this experiment
integrates fully convolutional network and multi-
kernel convolutional network to accurately diagnose
AD while generating disease probability maps for
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Fig. 13. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CG+CC.

Fig. 14. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of CG+CC+UNC.

subjects with AD status and NC. Our model out-
puts probabilistic maps of fiber tracts of intuitive
regions of interest, which can help in the direction
of explainable artificial intelligence in medicine and
deriving individualized phenotypes of occult diseases
from traditional diagnostic tools. Disease probability

maps provide a way to track areas of distinct brain
fiber tracts associated with AD during diagnosis. Our
model shows good predictive performance, yielding
high and consistent values across all test datasets,
according to the criteria of several different metrics.
Thus, these findings demonstrate innovation in com-
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Fig. 15. QA, QA and fiber bundle overlay map, fiber bundle map, and fiber bundle probability map for AD, MCI, and NC of WM.

Table 2
Classification framework model comparison

Method Data AD/MCI/NC Model Modality ACC% SEN% SPE% AUC

Yida et al. [34] 4 hospitals 318/0/279 XGBoost DTI 82.35 86.36 78.05 0.88
Ghaidaa et al. [35] ADNI 35/30/31 BoW+SVM DTI 89 – – –
Bahare et al. [36] ADNI 24/0/24 KSVM DTI 95.8 95.8 95.8 0.99
Ying et al. [37] ADNI 48/0/51 SVM DTI 91.92 – – 0.95
Li et al. [38] ADNI 0/70/50 CNN+SVM DTI+sMRI 94.2 97.3 92.9 0.95
Our method ADNI 121/130/162 FMCNN DTI 96.95 97.41 100 0.98

bining medicine and computing, while providing new
insights into the field of computer vision, while also
expanding the range of biomedical applications of
neural networks.

The disease probability map is created by applying
the softmax function element-wise to the final acti-
vation array generated by the FCN. This step enables
the transformation of an abstract tensor encoding
of neuroanatomical information into a probabilis-
tic array, demonstrating the likelihood that different
fiber tracts in the region of interest contribute to AD,
depending on the local geometry. In other words, the
model refined the conceptualization of AD-suggested
morphologies across the region of interest, and then
used this learned information in test cases to assess
the contribution of each fiber to the development
of AD-related pathophysiological processes. proba-
bility. Representing these probabilities simply as a
coherent grayscale map, it is thus possible to predict
bar-by-bar where disease-related changes are likely

to exist. Furthermore, we believe that the broader con-
cept of disease process mapping by deep learning has
the potential to be applied to many fields of medicine.
Our work builds on these advances by requiring only
one imaging modality to map a set of raw pixel val-
ues to a homogenous neural information-preserving
disease probability map.

In conclusion, our deep learning framework is able
to obtain high-accuracy AD classification features
from DTI data. The framework also applies to other
neurodegenerative diseases.
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